Below is a clear, beginner-friendly, step-by-step guide to using AI in a Flutter application.
I’ll keep it practical and show a real example (text AI using an API), but the same steps apply to images, chatbots, recommendations, etc.
Step 1: Decide what kind of AI you want
Before coding, be clear about the goal.
Common AI use cases in Flutter:
- 🤖 Chatbot / Q&A
- ✍️ Text generation or summarization
- 🖼️ Image generation
- 🔍 Search / recommendations
- 🧠 Smart forms (auto-complete, suggestions)
👉 Example we’ll build: AI text generator (chat-style)
Step 2: Choose how AI will run
You have two main options:
Option A: Cloud AI (Recommended for beginners)
- Uses APIs (OpenAI, Gemini, Azure, etc.)
- More powerful
- Needs internet
Option B: On-device AI
- Uses TensorFlow Lite
- Works offline
- Harder + limited
👉 We’ll use Option A (API-based AI)
Step 3: Create your Flutter project
flutter create ai_flutter_app
cd ai_flutter_app
flutter run
Step 4: Add required packages
Edit pubspec.yaml:
dependencies:
flutter:
sdk: flutter
http: ^1.2.0
Then run:
flutter pub get
Step 5: Get an AI API key
- Choose an AI provider (example: OpenAI)
- Create an API key
- Never hardcode it directly in production
For learning/testing:
const String apiKey = "YOUR_API_KEY";
Step 6: Create a service to talk to AI
Create a new file:
lib/services/ai_service.dart
import 'dart:convert';
import 'package:http/http.dart' as http;
class AIService {
static const String apiKey = "YOUR_API_KEY";
static const String url = "https://api.openai.com/v1/chat/completions";
Future<String> getAIResponse(String prompt) async {
final response = await http.post(
Uri.parse(url),
headers: {
"Content-Type": "application/json",
"Authorization": "Bearer $apiKey",
},
body: jsonEncode({
"model": "gpt-4.1-mini",
"messages": [
{"role": "user", "content": prompt}
]
}),
);
final data = jsonDecode(response.body);
return data["choices"][0]["message"]["content"];
}
}
Step 7: Build a simple UI
Edit lib/main.dart:
import 'package:flutter/material.dart';
import 'services/ai_service.dart';
void main() {
runApp(const MyApp());
}
class MyApp extends StatelessWidget {
const MyApp({super.key});
@override
Widget build(BuildContext context) {
return MaterialApp(
home: AIPage(),
);
}
}
class AIPage extends StatefulWidget {
@override
State<AIPage> createState() => _AIPageState();
}
class _AIPageState extends State<AIPage> {
final TextEditingController controller = TextEditingController();
final AIService aiService = AIService();
String response = "";
bool loading = false;
void askAI() async {
setState(() => loading = true);
final result = await aiService.getAIResponse(controller.text);
setState(() {
response = result;
loading = false;
});
}
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(title: const Text("AI Flutter App")),
body: Padding(
padding: const EdgeInsets.all(16),
child: Column(
children: [
TextField(
controller: controller,
decoration: const InputDecoration(
labelText: "Ask something...",
),
),
const SizedBox(height: 10),
ElevatedButton(
onPressed: loading ? null : askAI,
child: const Text("Ask AI"),
),
const SizedBox(height: 20),
loading
? const CircularProgressIndicator()
: Text(response),
],
),
),
);
}
}
Step 8: Run the app 🚀
flutter run
Type a question → Press Ask AI → See AI response.
Step 9: Improve & secure your app
Important improvements:
- 🔐 Move API calls to a backend
- 🛑 Add error handling
- ⏳ Add typing animation
- 💬 Store chat history
- 🎨 Better UI (chat bubbles)
Step 10: Other AI features you can add
| Feature | How |
|---|---|
| Image AI | Use image generation APIs |
| Voice AI | Speech-to-text + AI |
| Smart search | AI embeddings |
| Offline AI | TensorFlow Lite |
Architecture Recommendation (Best Practice)
Flutter App
↓
Your Backend (Node / Python / Firebase)
↓
AI API
This keeps your API key safe.
Summary
Steps in short:
- Choose AI use case
- Pick AI type (API or on-device)
- Create Flutter project
- Add HTTP package
- Connect to AI API
- Build UI
- Improve security & UX

[…] + Mini Player + Equalizer + Production + Play Store […]